

斜角門形カルバート

NNTD NETIS掲載終了

●特長

1.施工が早い

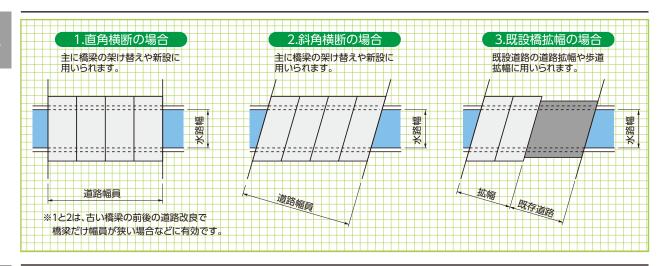
斜角門形カルバートは、かぶせるだけなので、通常の施工現場であれ ば、20分/1個のペース(実績による)での敷設が可能であり、カルバー ト工法としては、異例の施工スピードです。

工期の大幅な短縮を図ることにより、CO²排出の削減に繋がり、地球 規模の環境配慮にも貢献できます。

2.斜角度が自由に設定可能

独自の斜角製品製造技術により、水路と交差する道路との交差角を90 度から60度まで自由に設定出来ます。

また、道路設計時には用地を有効活用でき、道路線形計画時には、線 形の自由度が広がります。


3.渇水期に関係なく通年施工が可能

横断部を門形にした場合、既設水路を撤去することなく通水したまま 工事が可能で、水換えや支保工も不要となり、今まで不可能だった農 繁期の工事も可能となりました。

また、既設水路には手をつけないので、既存水生生物や環境を壊すこ ともなく、自然に優しいエコロジーな製品といえます。

◆コンクリート

設計基準強度(製品): σ ck=50N/mm²(40N/mm²)

設計基準強度(基礎):σck=24N/mm² 単位体積重量 $\gamma c = 24.5 \text{kN/m}^3$

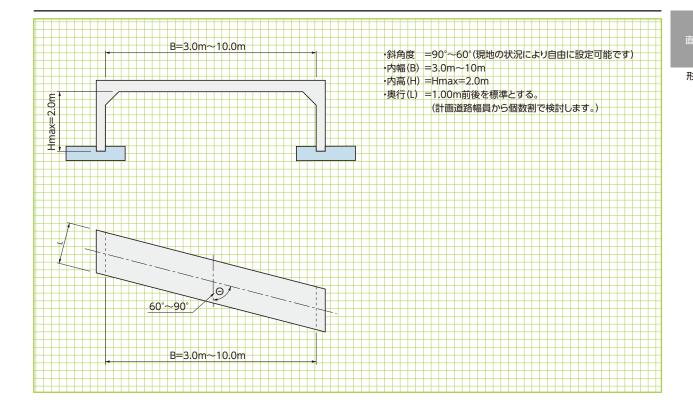
◆土質等

土の単位体積重量 $rs = 19.0 \text{kN/m}^3$

静止土圧係数 :Ko = 0.5

水平震度 :Kh =0.20(二種地盤) 地震時の土圧 :修正物部•岡部公式 アスファルトの単位体積重量:γa =22.5kN/m³

◆安定検討


転倒(常時) :合力の作用位置 B/6以内

(地震時):合力の作用位置 B/3以内

滑動(常時) :Fs > 1.5 (地震時):Fs > 1.2

◆許容応力度の割増係数

常時 $:\alpha = 1.00$ 温度変化時 $:\alpha = 1.15$ 地震時 $:\alpha = 1.50$

